Key benefits of ccna routing and switching icnd2 200 105 official cert guide

Pinpoint of icnd2 200 105 practice exam materials and testing software for Cisco certification for client, Real Success Guaranteed with Updated ccna 200 105 pdf dumps vce Materials. 100% PASS Interconnecting Cisco Networking Devices Part 2 (ICND2 v3.0) exam Today!


The article at Testaimer.com going over http://www.testaimer.com/200-105-test is very comprehensive.

Q21. - (Topic 2) 

Refer to the exhibit. 

When running EIGRP, what is required for RouterA to exchange routing updates with RouterC? 

A. AS numbers must be changed to match on all the routers 

B. Loopback interfaces must be configured so a DR is elected 

C. The no auto-summary command is needed on Router A and Router C 

D. Router B needs to have two network statements, one for each connected network 

Answer: A Explanation: 

Here we required same autonomous system between router A,B,C.Routing updated always exchange between in same EIGRP EIGRP autonomous system.you can configure more than one EIGRP autonomous system on the same router. This is typically done at a redistribution point where two EIGRP autonomous systems are interconnected. Individual router interfaces should only be included within a single EIGRP autonomous system. Cisco does not recommend running multiple EIGRP autonomous systems on the same set of interfaces on the router. If multiple EIGRP autonomous systems are used with multiple points of mutual redistribution, it can cause discrepancies in the EIGRP topology table if correct filtering is not performed at the redistribution points. If possible, Cisco recommends you configure only one EIGRP autonomous system in any single autonomous system. http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080093f07.shtml 


Q22. - (Topic 3) 

What are three reasons that an organization with multiple branch offices and roaming users might implement a Cisco VPN solution instead of point-to-point WAN links? (Choose three.) 

A. reduced cost 

B. better throughput 

C. broadband incompatibility 

D. increased security 

E. scalability 

F. reduced latency 

Answer: A,D,E 

Explanation: Cisco VPN solutions provide exceptional security through encryption and authentication technologies that protect data in transit from unauthorized access and attacks. A Cisco VPN helps you: Use highly secure communications, with access rights tailored to individual users Quickly add new sites or users, without significantly expanding your existing infrastructure Improve productivity by extending corporate networks, applications, and collaboration tools Reduce communications costs while increasing flexibility 


Q23. - (Topic 1) 

Refer to the exhibit. 

Why has this switch not been elected the root bridge for VLAN1? 

A. It has more than one interface that is connected to the root network segment. 

B. It is running RSTP while the elected root bridge is running 802.1d spanning tree. 

C. It has a higher MAC address than the elected root bridge. 

D. It has a higher bridge ID than the elected root bridge. 

Answer:

Explanation: 

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a008009482f.s html When a switch receives a BPDU, it first compares priority, the lower number wins. If a tie, compare MAC, the smaller one wins. Here Switch has 32769 priority which is greater than 20481 so switch will not elect for root bridge. It says the bridge priority for Switch is 32769, and the root priority is 20481. Which means that some other switch has the lower priority and won the election for VLAN 1. 


Q24. - (Topic 2) 

Which statement is true, as relates to classful or classless routing? 

A. Classful routing protocols send the subnet mask in routing updates. 

B. RIPv1 and OSPF are classless routing protocols. 

C. Automatic summarization at classful boundaries can cause problems on discontiguous subnets. 

D. EIGRP and OSPF are classful routing protocols and summarize routes by default. 

Answer:

Explanation: http://www.ciscopress.com/articles/article.asp?p=174107&seqNum=3 

RIPv1, RIPv2, IGRP, and EIGRP all auto-summarize classful boundaries by default (OSPF does not).To make discontiguous networks work, meaning you don't want classful boundries to summarize, you need to turn off auto-summary. 


Q25. - (Topic 1) 

Refer to the exhibit. 

What commands must be configured on the 2950 switch and the router to allow communication between host 1 and host 2? (Choose two.) 

A. Router(config)# interface fastethernet 0/0 Router(config-if)# ip address 192.168.1.1 255.255.255.0 Router(config-if)# no shut down 

B. Router(config)# interface fastethernet 0/0 Router(config-if)# no shut down Router(config)# interface fastethernet 0/0.1 Router(config-subif)# encapsulation dot1q 10 Router(config-subif)# ip address 192.168.10.1 255.255.255.0 

Router(config)# interface fastethernet 0/0.2 Router(config-subif)# encapsulation dot1q 20 Router(config-subif)# ip address 192.168.20.1 255.255.255.0 

C. Router(config)# router eigrp 100 Router(config-router)# network 192.168.10.0 Router(config-router)# network 192.168.20.0 

D. Switch1(config)# vlan database Switch1(config-vlan)# vtp domain XYZ Switch1(config-vlan)# vtp server 

E. Switch1(config)# interface fastethernet 0/1 Switch1(config-if)# switchport mode trunk 

F. Switch1(config)# interface vlan 1 Switch1(config-if)# ip default-gateway 192.168.1.1 

Answer: B,E 

Explanation: 

The two answers B and E list all the commands needed to configure interVLAN routing. Please notice that Cisco switch 2950, 2960 only support dot1Q trunking so we don’t need to specify which trunking encapsulation to use in this case. For Cisco switches 3550 or above we have to use these commands instead: 

Switch3550(config-if)#switchport trunk encapsulation dot1q Switch3550(config-if)#switchport mode trunk 

References: http://www.cisco.com/en/US/tech/tk389/tk815/technologies_configuration_example09186a 00800949fd.shtml https://learningnetwork.cisco.com/servlet/JiveServlet/download/5669-2461/Router%20on%20a%20Stick.pdf. 


Q26. - (Topic 2) 

Refer to the exhibit. 

The network associate is configuring OSPF on the Core router. All the connections to the branches should be participating in OSPF. The link to the ISP should NOT participate in OSPF and should only be advertised as the default route. What set of commands will properly configure the Core router? 

A. Core(config-router)# default-information originate Core(config-router)# network 10.0.0.0 0.255.255.255 area 0 Core(config-router)# exit Core(config)# ip route 0.0.0.0 0.0.0.0 10.10.2.14 

B. Core(config-router)# default-information originate Core(config-router)# network 10.10.2.13 0.0.0.242 area 0 Core(config-router)# exit Core(config)# ip route 0.0.0.0 0.0.0.0 10.10.2.14 

C. Core(config-router)# default-information originate Core(config-router)# network 10.10.2.16 0.0.0.15 area 0 Core(config-router)# exit Core(config)# ip route 0.0.0.0 0.0.0.0 10.10.2.14 

D. Core(config-router)# default-information originate Core(config-router)# network 10.10.2.32 0.0.0.31 area 0 Core(config-router)# exit Core(config)# ip route 0.0.0.0 0.0.0.0 10.10.2.14 

Answer:

Explanation: 

There are two ways to inject a default route into a normal area.1. If the ASBR already has the default route in its routing table, you can advertise theexisting 0.0.0.0/0 into the OSPF domain with the default-information originate router configuration command.2. If the ASBR doesn’t have a default route, you can add the keyword always to the default-information originate command (default-information originate always).This command will advertise a default route into the OSPF domain, regardless of whether it has a route to 0.0.0.0. Another benefit of adding always keyword is that it can add stability to the internetwork. For example, if the ASBR is learning a default route from another routing domain such as RIP and this route is flapping, then without the always keyword, each time the route flaps, the ASBR will send a new Type 5 LSA into the OSPF domain causing some instability inside the OSPF domain. With the always keyword, the ASBR will advertise the default inside the OSPF domain always, In the example shown here, only choice C is correct as the wildcard mask correctly specifies the 10.10.2.16 0.0.0.15 networks, which include all IP addresses in the 10.10.2.16-10.10.2.31 range. In this question we were told that the ISP link should NOT be configured for OSPF, making choice A incorrect. http://www.cisco.com/en/US/tech/tk365/technologies_configuration_example09186a00801 ec9f0.shtml 


Q27. - (Topic 1) 

Refer to the exhibit. 

Given the output shown from this Cisco Catalyst 2950, what is the reason that interface FastEthernet 0/10 is not the root port for VLAN 2? 

A. This switch has more than one interface connected to the root network segment in VLAN 2. 

B. This switch is running RSTP while the elected designated switch is running 802.1d Spanning Tree. 

C. This switch interface has a higher path cost to the root bridge than another in the topology. 

D. This switch has a lower bridge ID for VLAN 2 than the elected designated switch. 

Answer:

Explanation: These four parameters are examined in order to make root bridge , root port , designated port. Other switch has lowest Sending Bridge ID or Sending Port ID so vlan 2 is not the root port. 

1. A lower Root Bridge ID2. A lower path cost to the Root3. A lower Sending Bridge ID4. A lower Sending Port ID 


Q28. - (Topic 2) 

Refer to the exhibit. 

From R1, a network administrator is able to ping the serial interface of R2 but, unable to ping any of the subnets attached to RouterB. Based on the partial outputs in the exhibit, what could be the problem? 

A. EIGRP does not support VLSM. 

B. The EIGRP network statements are incorrectly configured. 

C. The IP addressing on the serial interface of RouterA is incorrect. 

D. The routing protocol has summarized on the classful boundary. 

E. EIGRP has been configured with an invalid autonomous system number. 

Answer:

Explanation: 

CCNA - EIGRP Common Question Reference: 

http://www.orbitco-ccna-pastquestions.com/CCNA---EIGRP-Common-Question.php 

Explanation: 

If you look carefully at the R2 ip route, you will discover that the R2 does not learn any network from R1; this is because the routing protocol used here (EIGRP) performs auto summary when advertising routes to peers across a network. So in this case the address 172.17.0.0/16 is a summarized address. If the router was configured with no auto summary command, R2 LAN addresses would have been advertised and reached. 


Q29. - (Topic 1) 

Which term describes a spanning-tree network that has all switch ports in either the blocking or fowarding state? 

A. converged 

B. redundant 

C. provisioned 

D. spanned 

Answer:

Explanation: 

Spanning Tree Protocol convergence (Layer 2 convergence) happens when bridges and switches have transitioned to either the forwarding or blocking state. When layer 2 is converged, root bridge is elected and all port roles (Root, Designated and Non-Designated) in all switches are selected. 


Q30. - (Topic 2) 

Which statement describes an EIGRP feasible successor route? 

A. A primary route, added to the routing table 

B. A backup route, added to the routing table 

C. A primary route, added to the topology table 

D. A backup route, added to the topology table 

Answer:

Explanation: 

Two terms that appear often in the EIGRP world are "successor" and "feasible successor". A successor is the route with the best metric to reach a destination. That route is stored in the routing table. A feasible successor is a backup path to reach that same destination that can be used immediately if the successor route fails. These backup routes are stored in the topology table. 

Reference: http://study-ccna.com/eigrp-overview