10 Tips For 300-101 customers

It is more faster and easier to pass the Cisco 300-101 exam by using Guaranteed Cisco Implementing Cisco IP Routing questuins and answers. Immediate access to the Renewal 300-101 Exam and find the same core area 300-101 questions with professionally verified answers, then PASS your exam with a high score now.


The article at Testaimer.com going over http://www.testaimer.com/300-101-test is very comprehensive.

2021 Apr 300-101 free download

Q31. A network engineer executes the show ip flow export command. Which line in the output indicates that the send queue is full and export packets are not being sent? 

A. output drops 

B. enqueuing for the RP 

C. fragmentation failures 

D. adjacency issues 

Answer:

Explanation: 

Table 5 show ip flow export Field Descriptions Field Description Exporting flows to 10.1.1.1

Specifies the export destinations and ports. (1000) and 10.2.1.1 The ports are in parentheses. Exporting

using source Specifies the source address or interface. IP address 10.3.1.1 Version 5 flow records

Specifies the version of the flow. 11 flows exported in 8 udp The total number of export packets sent, and

datagrams the total number of flows contained within them. 0 flows failed due to lack of No memory was

available to create an export export packet packet. 0 export packets were sent The packet could not be

processed by CEF or up to process level by fast switching, possibly because another feature requires

running on the packet. 0 export packets were Indicates that CEF was unable to switch the dropped due to

no fib packet or forward it up to the process level. 0 export packets were dropped due to adjacency issues

0 export packets were Indicates that the packet was dropped because dropped due to of problems

constructing the IP packet. fragmentation failures 0 export packets were dropped due to encapsulation

fixup failures 0 export packets were Indicates that there was a problem transferring dropped enqueuing for

the the export packet between the RP and the line RP card. 0 export packets were dropped due to IPC

rate limiting 0 export packets were Indicates that the send queue was full while dropped due to output the

packet was being transmitted. drops

Reference: http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/oaggnf.html


Q32. Refer to the exhibit. The command is executed while configuring a point-to-multipoint Frame Relay interface. Which type of IPv6 address is portrayed in the exhibit? 

A. link-local 

B. site-local 

C. global 

D. multicast 

Answer:

Explanation: 


Q33. Which encapsulation supports an interface that is configured for an EVN trunk? 

A. 802.1Q 

B. ISL 

C. PPP 

D. Frame Relay 

E. MPLS 

F. HDLC 

Answer:

Explanation: 

Restrictions for EVN

An EVN trunk is allowed on any interface that supports 802.1q encapsulation, such as Fast Ethernet,

Gigabit Ethernet, and port channels.

A single IP infrastructure can be virtualized to provide up to 32 virtual networks end-to-end.

If an EVN trunk is configured on an interface, you cannot configure VRF-Lite on the same interface.

OSPFv3 is not supported; OSPFv2 is supported.

Reference: 

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/evn/configuration/xe-3s/evn-xe-3s- book/evnoverview.Pdf


Q34. Which type of traffic does DHCP snooping drop? 

A. discover messages 

B. DHCP messages where the source MAC and client MAC do not match 

C. traffic from a trusted DHCP server to client 

D. DHCP messages where the destination MAC and client MAC do not match 

Answer:

Explanation: 

The switch validates DHCP packets received on the untrusted interfaces of VLANs with DHCP snooping

enabled. The switch forwards the DHCP packet unless any of the following conditions occur (in which case the packet is dropped):

The switch receives a packet (such as a DHCPOFFER, DHCPACK, DHCPNAK, or DHCPLEASEQUERY

packet) from a DHCP server outside the network or firewall.

The switch receives a packet on an untrusted interface, and the source MAC address and the DHCP client

hardware address do not match. This check is performed only if the DHCP snooping MAC address

verification option is turned on. · The switch receives a DHCPRELEASE or DHCPDECLINE message from an untrusted host with an entry in the DHCP snooping binding table, and the interface information in the binding table does not match the interface on which the message was received.

The switch receives a DHCP packet that includes a relay agent IP address that is not 0.0.0.0. To support

trusted edge switches that are connected to untrusted aggregation-switch ports, you can enable the DHCP

option-82 on untrusted port feature, which enables untrusted aggregation- switch ports to accept DHCP

packets that include option-82 information. Configure the port on the edge switch that connects to the

aggregation switch as a trusted port. Reference: http:// www.cisco.com/c/en/us/td/docs/switches/lan/

catalyst6500/ios/12- 2SX/configuration/guide/book/snoodhcp.html

Topic 7, Mix Questions 

83. Which two commands would be used to troubleshoot high memory usage for a process? (Choose two.) 

A. router#show memory allocating-process table 

B. router#show memory summary 

C. router#show memory dead 

D. router#show memory events 

E. router#show memory processor statistics 

Answer: A,B 

Explanation: 


Q35. How does an IOS router process a packet that should be switched by Cisco Express Forwarding without an FIB entry? 

A. by forwarding the packet 

B. by dropping the packet 

C. by creating a new FIB entry for the packet 

D. by looking in the routing table for an alternate FIB entry 

Answer:

Explanation: 


Down to date 300-101 practice:

Q36. The enterprise network WAN link has been receiving several denial of service attacks from both IPv4 and IPv6 sources. Which three elements can you use to identify an IPv6 packet via its header, in order to filter future attacks? (Choose three.) 

A. Traffic Class 

B. Source address 

C. Flow Label 

D. Hop Limit 

E. Destination Address 

F. Fragment Offset 

Answer: A,C,D 

Explanation: 


Q37. For troubleshooting purposes, which method can you use in combination with the “debug ip packet” command to limit the amount of output data? 

A. You can disable the IP route cache globally. 

B. You can use the KRON scheduler. 

C. You can use an extended access list. 

D. You can use an IOS parser. 

E. You can use the RITE traffic exporter. 

Answer:

Explanation: 

The debug ip packet command generates a substantial amount of output and uses a substantial amount of

system resources. This command should be used with caution in production networks. Always use with the access-list command to apply an extended ACL to the debug output. Reference: http://www.cisco.com/c/en/us/support/docs/security/dynamic-multipoint-vpn-dmvpn/111976-dmvpn-troubleshoot-00.html


Q38. Refer to the exhibit. The DHCP client is unable to receive a DHCP address from the DHCP server. Consider the following output: 

hostname RouterB ! interface fastethernet 0/0 

ip address 172.31.1.1 255.255.255.0 interface serial 0/0 ip address 10.1.1.1 255.255.255.252 

! ip route 172.16.1.0 255.255.255.0 10.1.1.2 

Which configuration is required on the Router B fastethernet 0/0 port in order to allow the DHCP client to successfully receive an IP address from the DHCP server? 

A. RouterB(config-if)# ip helper-address 172.16.1.2 

B. RouterB(config-if)# ip helper-address 172.16.1.1 

C. RouterB(config-if)# ip helper-address 172.31.1.1 

D. RouterB(config-if)# ip helper-address 255.255.255.255 

Answer:

Explanation: 


Q39. What does the following access list, which is applied on the external interface FastEthernet 1/0 of the perimeter router, accomplish? 

router(config)#access-list 101 deny ip 10.0.0.0 0.255.255.255 any log 

router (config)#access-list 101 deny ip 192.168.0.0 0.0.255.255 any log 

router (config)#access-list 101 deny ip 172.16.0.0 0.15.255.255 any log 

router (config)#access-list 101 permit ip any any 

router (config)#interface fastEthernet 1/0 

router (config-if)#ip access-group 101 in 

A. It prevents incoming traffic from IP address ranges 10.0.0.0-10.0.0.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255 and logs any intrusion attempts. 

B. It prevents the internal network from being used in spoofed denial of service attacks and logs any exit to the Internet. 

C. It filters incoming traffic from private addresses in order to prevent spoofing and logs any intrusion attempts. 

D. It prevents private internal addresses to be accessed directly from outside. 

Answer:

Explanation: 

The private IP address ranges defined in RFC 1918 are as follows:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255 

These IP addresses should never be allowed from external networks into a

corporate network as they would only be able to reach the network from the outside via routing problems or

if the IP addresses were spoofed. This ACL is used to prevent all packets with a spoofed reserved private

source IP address to enter the network. The log keyword also enables logging of this intrusion attempt.


Q40. Which two actions must you perform to enable and use window scaling on a router? (Choose two.) 

A. Execute the command ip tcp window-size 65536. 

B. Set window scaling to be used on the remote host. 

C. Execute the command ip tcp queuemax. 

D. Set TCP options to "enabled" on the remote host. 

E. Execute the command ip tcp adjust-mss. 

Answer: A,B 

Explanation: 

The TCP Window Scaling feature adds support for the Window Scaling option in RFC 1323,

TCP Extensions for High Performance . A larger window size is recommended to improve TCP performance in network paths with large bandwidth-delay product characteristics that are called Long Fat

Networks (LFNs). 

The TCP Window Scaling enhancement provides that support. The window scaling extension in Cisco IOS software expands the definition of the TCP window to 32 bits and then uses a scale factor to carry this 32-bit value in the 16-bit window field of the TCP header. 

The window size can increase to a scale factor of 14. Typical applications use a scale factor of 3 when deployed in LFNs. 

The TCP Window Scaling feature complies with RFC 1323. The larger scalable window size will allow TCP to perform better over LFNs. 

Use the ip tcp window-size command in global configuration mode to configure the TCP window size. In order for this to work, the remote host must also support this feature and its window size must be increased. 

Reference: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipapp/

configuration/12-4t/iap-12- 4t-book/iap-tcp.html#GUID-BD998AC6-F128-47DD-B5F7-B226546D4B08