Today Big Q: ccnp route 300 101 dumps?

Highest Quality of ccnp routing and switching route 300 101 official cert guide exam answers materials and preparation for Cisco certification for examinee, Real Success Guaranteed with Updated examcollection 300 101 pdf dumps vce Materials. 100% PASS Implementing Cisco IP Routing exam Today!


The article at Testaimer.com going over http://www.testaimer.com/300-101-test is very comprehensive.

Q61. What is a function of NPTv6? 

A. It interferes with encryption of the full IP payload. 

B. It maintains a per-node state. 

C. It is checksum-neutral. 

D. It rewrites transport layer headers. 

Answer:

Explanation: 

RFC 6296 describes a stateless IPv6-to-IPv6 Network Prefix Translation (NPTv6) function,

designed to provide address independence to the edge network. It is transport-agnostic with respect to

transports that do not checksum the IP header, such as SCTP, and to transports that use the TCP/UDP/

DCCP (Datagram Congestion Control Protocol) pseudo-header and checksum NPTv6 provides a simple

and compelling solution to meet the address-independence requirement in IPv6. The addressindependence

benefit stems directly from the translation function of the network prefix translator. To avoid

as many of the issues associated with NAPT44 as possible, NPTv6 is defined to include a two-way,

checksum-neutral, algorithmic translation function, and nothing else. Reference: http://tools.ietf.org/html/

rfc6296


Q62. A network engineer executes the show crypto ipsec sa command. Which three pieces of information are displayed in the output? (Choose three.) 

A. inbound crypto map 

B. remaining key lifetime 

C. path MTU 

D. tagged packets 

E. untagged packets 

F. invalid identity packets 

Answer: A,B,C 

Explanation: 

show crypto ipsec sa This command shows IPsec SAs built between peers. The encrypted

tunnel is built between 12.1.1.1 and 12.1.1.2 for traffic that goes between networks 20.1.1.0 and 10.1.1.0.

You can see the two Encapsulating Security Payload (ESP) SAs built inbound and outbound.

Authentication Header (AH) is not used since there are

no AH SAs.

This output shows an example of the show crypto ipsec sa command (bolded ones found in answers for

this question).

interface: FastEthernet0

Crypto map tag: test, local addr. 12.1.1.1

local ident (addr/mask/prot/port): (20.1.1.0/255.255.255.0/0/0) remote ident (addr/mask/prot/port):

(10.1.1.0/255.255.255.0/0/0) current_peer: 12.1.1.2

PERMIT, flags={origin_is_acl,}

#pkts encaps: 7767918, #pkts encrypt: 7767918, #pkts digest 7767918 #pkts decaps: 7760382, #pkts

decrypt: 7760382, #pkts verify 7760382 #pkts compressed:

0, #pkts decompressed: 0

#pkts not compressed: 0, #pkts compr. failed: 0,

#pkts decompress failed: 0, #send errors 1, #recv errors 0 local crypto endpt.: 12.1.1.1, remote crypto

endpt.: 12.1.1.2 path mtu 1500, media mtu 1500

current outbound spi: 3D3

inbound esp sas:

spi: 0x136A010F(325714191)

transform: esp-3des esp-md5-hmac ,

in use settings ={Tunnel, }

slot: 0, conn id: 3442, flow_id: 1443, crypto map: test sa timing: remaining key lifetime (k/sec):

(4608000/52) IV size: 8 bytes

replay detection support: Y

inbound ah sas:

inbound pcp sas:

inbound pcp sas:

outbound esp sas:

spi: 0x3D3(979)

transform: esp-3des esp-md5-hmac ,

in use settings ={Tunnel, }

slot: 0, conn id: 3443, flow_id: 1444, crypto map: test sa timing: remaining key lifetime (k/sec):

(4608000/52) IV size: 8 bytes

replay detection support: Y

outbound ah sas:

outbound pcp sas:

Reference: http://www.cisco.com/c/en/us/support/docs/security-vpn/ipsec-negotiation-ike- protocols/5409-

ipsec-debug-00.html


Q63. An engineer has configured a router to use EUI-64, and was asked to document the IPv6 address of the router. The router has the following interface parameters: 

mac address C601.420F.0007 

subnet 2001:DB8:0:1::/64 

Which IPv6 addresses should the engineer add to the documentation? 

A. 2001:DB8:0:1:C601:42FF:FE0F:7 

B. 2001:DB8:0:1:FFFF:C601:420F:7 

C. 2001:DB8:0:1:FE80:C601:420F:7 

D. 2001:DB8:0:1:C601:42FE:800F:7 

Answer:

Explanation: 

Explanation: Extended Unique Identifier (EUI), as per RFC2373, allows a host to assign iteslf a unique 64-

Bit IP Version 6 interface identifier (EUI-64). This feature is a key benefit over IPv4 as it eliminates the

need of manual configuration or DHCP as in the world of IPv4. The IPv6 EUI-64 format address is obtained

through the 48-bit MAC address. The Mac address is first separated into two 24-bits, with one being OUI

(Organizationally Unique Identifier) and the other being NIC specific. The 16-bit 0xFFFE is then inserted

between these two 24-bits to for the 64-bit EUI address. IEEE has chosen FFFE as a reserved value which

can only appear in EUI-64 generated from the EUI-48 MAC address. Here is an example showing how the

Mac Address is used to generate EUI.

Next, the seventh bit from the left, or the universal/local (U/L) bit, needs to be inverted. This bit identifies

whether this interface identifier is universally or locally administered. If 0, the address is locally

administered and if 1, the address is globally unique. It is worth noticing that in the OUI portion, the globally

unique addresses assigned by the IEEE has always been set to 0 whereas the locally created addresses

has 1 configured. Therefore, when the bit is inverted, it maintains its original scope (global unique address

is still global unique and vice versa). The reason for inverting can be found in RFC4291 section 2.5.1.

Reference: https:// supportforums.cisco.com/document/100566/understanding-ipv6-eui-64-bit- address


Q64. Which three items can you track when you use two time stamps with IP SLAs? (Choose three.) 

A. delay 

B. jitter 

C. packet loss 

D. load 

E. throughput 

F. path 

Answer: A,B,C


Q65. Which statement about the use of tunneling to migrate to IPv6 is true? 

A. Tunneling is less secure than dual stack or translation. 

B. Tunneling is more difficult to configure than dual stack or translation. 

C. Tunneling does not enable users of the new protocol to communicate with users of the old protocol without dual-stack hosts. 

D. Tunneling destinations are manually determined by the IPv4 address in the low-order 32 bits of IPv4-compatible IPv6 addresses. 

Answer:

Explanation: 

Using the tunneling option, organizations build an overlay network that tunnels one protocol over the other

by encapsulating IPv6 packets within IPv4 packets and IPv4 packets within IPv6 packets. The advantage of this approach is that the new protocol can work without disturbing the old protocol, thus providing connectivity between users of the new protocol. Tunneling has two disadvantages, as discussed in RFC 6144: Users of the new architecture cannot use the services of the underlying infrastructure.

Tunneling does not enable users of the new protocol to communicate with users of the old protocol without

dual-stack hosts, which negates interoperability. 

Reference: http://www.cisco.com/c/en/us/products/

collateral/ios-nx-os-software/enterprise-ipv6- solution/white_paper_c11-676278.html


Q66. What is the default OSPF hello interval on a Frame Relay point-to-point network? 

A. 10 

B. 20 

C. 30 

D. 40 

Answer:

Explanation: 

Explanation: Before you troubleshoot any OSPF neighbor-related issues on an NBMA network, it is

important to remember that an NBMA network can be configured in these modes of operation with the ip

ospf network command: Point-to-Point Point-to-Multipoint Broadcast NBMA The Hello and Dead Intervals

of each mode are described in this table: Hello Interval Dead Interval Network Type (secs) (secs) Point-to-

Point 10 40 Point-to-Multipoint 30 120 Broadcast 10 40 Non-Broadcast 30 120

Reference: http://www.cisco.com/c/en/us/support/docs/ip/open-shortest-path-first-ospf/13693- 22.html