Key benefits of examcollection 300 101

It is impossible to pass Cisco ccnp routing and switching route 300 101 exam without any help in the short term. Come to Testking soon and find the most advanced, correct and guaranteed Cisco 300 101 pdf practice questions. You will get a surprising result by our Down to date Implementing Cisco IP Routing practice guides.

Q11. You have been asked to evaluate how EIGRP is functioning in a customer network. 

What type of route filtering is occurring on R6 

A. Distribute-list using an ACL 

B. Distribute-list using a prefix-list 

C. Distribute-list using a route-map 

D. An ACL using a distance of 255 



Q12. What is a function of NPTv6? 

A. It interferes with encryption of the full IP payload. 

B. It maintains a per-node state. 

C. It is checksum-neutral. 

D. It rewrites transport layer headers. 



RFC 6296 describes a stateless IPv6-to-IPv6 Network Prefix Translation (NPTv6) function,

designed to provide address independence to the edge network. It is transport-agnostic with respect to

transports that do not checksum the IP header, such as SCTP, and to transports that use the TCP/UDP/

DCCP (Datagram Congestion Control Protocol) pseudo-header and checksum NPTv6 provides a simple

and compelling solution to meet the address-independence requirement in IPv6. The addressindependence

benefit stems directly from the translation function of the network prefix translator. To avoid

as many of the issues associated with NAPT44 as possible, NPTv6 is defined to include a two-way,

checksum-neutral, algorithmic translation function, and nothing else. Reference:


Q13. Refer to the exhibit. 

Based on this FIB table, which statement is correct? 

A. There is no default gateway. 

B. The IP address of the router on FastEthernet is 

C. The gateway of last resort is 

D. The router will listen for all multicast traffic. 



The route is the default route and is listed as the first CEF entry. Here we see the next hop for this default route lists as the default router (gateway of last resort).


You are a network engineer with, a small IT company. They have recently merged two organizations and now need to merge their networks as shown in the topology exhibit. One network is using OSPF as its IGP and the other is using EIGRP as its IGP. R4 has been added to the existing OSPF network to provide the interconnect between the OSPF and EIGRP networks. Two links have been added that will provide redundancy. 

The network requirements state that you must be able to ping and telnet from loopback 101 on R1 to the OPSF domain test address of All traffic must use the shortest path that provides the greatest bandwidth. The redundant paths from the OSPF network to the EIGRP network must be available in case of a link failure. No static or default routing is allowed in either network. 

A previous network engineer has started the merger implementation and has successfully assigned and verified all IP addressing and basic IGP routing. You have been tasked with completing the implementation and ensuring that the network requirements are met. You may not remove or change any of the configuration commands currently on any of the routers. You may add new commands or change default values. 

Answer: First we need to find out 5 parameters (Bandwidth, Delay, Reliability, Load, MTU) of the s0/0/0 interface (the interface of R2 connected to R4) for redistribution: 

R2#show interface s0/0/0 

Write down these 5 parameters, notice that we have to divide the Delay by 10 because the metric unit is in tens of microsecond. For example, we get Bandwidth=1544 Kbit, Delay=20000 us, Reliability=255, Load=1, MTU=1500 bytes then we would redistribute as follows: 

R2#config terminal 

R2(config)# router ospf 1 

R2(config-router)# redistribute eigrp 100 metric-type 1 subnets 


R2(config-router)#router eigrp 100 

R2(config-router)#redistribute ospf 1 metric 1544 2000 255 1 1500 

Note: In fact, these parameters are just used for reference and we can use other parameters with 

no problem. 

If the delay is 20000us then we need to divide it by 10, that is 20000 / 10 = 2000) 

For R3 we use the show interface fa0/0 to get 5 parameters too 

R3#show interface fa0/0 

For example we get Bandwidth=10000 Kbit, Delay=1000 us, Reliability=255, Load=1, MTU=1500 bytes 

R3#config terminal 

R3(config)#router ospf 1 

R3(config-router)#redistribute eigrp 100 metric-type 1 subnets 


R3(config-router)#router eigrp 100 

R3(config-router)#redistribute ospf 1 metric 10000 100 255 1 1500 

Finally you should try to “show ip route” to see the network (the network behind R4) 

in the routing table of R1 and make a ping from R1 to this network. 

Note: If the link between R2 and R3 is FastEthernet link, we must put the command below under 

EIGRP process to make traffic from R1 to go through R3 (R1 -> R2 -> R3 -> R4), which is better 

than R1 -> R2 -> R4. 

R2(config-router)# distance eigrp 90 105 

This command sets the Administrative Distance of all EIGRP internal routes to 90 and all EIGRP external routes to 105, which is smaller than the Administrative Distance of OSPF (110) -> the link between R2 & R3 will be preferred to the serial link between R2 & R4. Note: The actual OPSF and EIGRP process numbers may change in the actual exam so be sure to use the actual correct values, but the overall solution is the same. 

Q15. Which two actions must you perform to enable and use window scaling on a router? (Choose two.) 

A. Execute the command ip tcp window-size 65536. 

B. Set window scaling to be used on the remote host. 

C. Execute the command ip tcp queuemax. 

D. Set TCP options to "enabled" on the remote host. 

E. Execute the command ip tcp adjust-mss. 

Answer: A,B 


The TCP Window Scaling feature adds support for the Window Scaling option in RFC 1323,

TCP Extensions for High Performance . A larger window size is recommended to improve TCP performance in network paths with large bandwidth-delay product characteristics that are called Long Fat

Networks (LFNs). 

The TCP Window Scaling enhancement provides that support. The window scaling extension in Cisco IOS software expands the definition of the TCP window to 32 bits and then uses a scale factor to carry this 32-bit value in the 16-bit window field of the TCP header. 

The window size can increase to a scale factor of 14. Typical applications use a scale factor of 3 when deployed in LFNs. 

The TCP Window Scaling feature complies with RFC 1323. The larger scalable window size will allow TCP to perform better over LFNs. 

Use the ip tcp window-size command in global configuration mode to configure the TCP window size. In order for this to work, the remote host must also support this feature and its window size must be increased. 


configuration/12-4t/iap-12- 4t-book/iap-tcp.html#GUID-BD998AC6-F128-47DD-B5F7-B226546D4B08

Q16. Which common issue causes intermittent DMVPN tunnel flaps? 

A. a routing neighbor reachability issue 

B. a suboptimal routing table 

C. interface bandwidth congestion 

D. that the GRE tunnel to hub router is not encrypted 



DMVPN Tunnel Flaps Intermittently Problem DMVPN tunnel flaps intermittently. Solution

When DMVPN tunnels flap, check the neighborship between the routers as issues with neighborship

formation between routers may cause the DMVPN tunnel to flap. In order to resolve this problem, make

sure the neighborship between the routers is always up. Reference:

docs/security-vpn/ipsec-negotiation-ike- protocols/29240-dcmvpn.html#Prblm1

Q17. Which PPP authentication method sends authentication information in clear text? 







PAP authentication involves a two-way handshake where the username and password are

sent across the link in clear text; hence, PAP authentication does not provide any protection against

playback and line sniffing. CHAP authentication, on the other hand, periodically verifies the identity of the

remote node using a three-way handshake. After the PPP link is established, the host sends a "challenge"

message to the remote node. The remote node responds with a value calculated using a one-way hash

function. The host checks the response against its own calculation of the expected hash value. If the

values match, the authentication is acknowledged; otherwise, the connection is terminated. Reference: ppp-callinhostname.


Q18. Which traffic characteristic is the reason that UDP traffic that carries voice and video is assigned to the queue only on a link that is at least 768 kbps? 

A. typically is not fragmented 

B. typically is fragmented 

C. causes windowing 

D. causes excessive delays for video traffic 



Q19. IPv6 has just been deployed to all of the hosts within a network, but not to the servers. Which feature allows IPv6 devices to communicate with IPv4 servers? 


B. NATng 

C. NAT64 

D. dual-stack NAT 

E. DNS64 



NAT64 is a mechanism to allow IPv6 hosts to communicate with IPv4 servers. The NAT64 server is the

endpoint for at least one IPv4 address and an IPv6 network segment of 32-bits (for instance 64:ff9b::/96, see RFC 6052, RFC 6146). The IPv6 client embeds the IPv4 address it wishes to communicate with using these bits, and sends its packets to the resulting address. The NAT64 server then creates a NAT-mapping between the IPv6 and the IPv4 address, allowing them to communicate.


Q20. Which Cisco VPN technology uses AAA to implement group policies and authorization and is also used for the XAUTH authentication method? 


B. Cisco Easy VPN