Tactics to 300 135 dumps

Master the ccnp 300 135 Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) content and be ready for exam day success quickly with this Actualtests 300 135 tshoot pdf free download. We guarantee it!We make it a reality and give you real ccnp tshoot 300 135 dumps questions in our Cisco ccnp tshoot 300 135 dumps pdf braindumps.Latest 100% VALID Cisco ccnp 300 135 Exam Questions Dumps at below page. You can use our Cisco ccnp tshoot 300 135 dumps braindumps and pass your exam.


The article at Testaimer.com going over http://www.testaimer.com/300-135-test is very comprehensive.

Q31. - (Topic 7) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport mode access vlan 10 command. 

B. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport access mode vlan 10 command. 

C. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport vlan 10 access command. 

D. In Configuration mode, using the interface range Fastethernet 1/0/1 – 2, then switchport access vlan 10 command. 

Answer:

Explanation: 

The problem here is that VLAN 10 is not configured on the proper interfaces on switch ASW1. 


Q32. - (Topic 14) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Disable auto summary on the EIGRP process 

B. Enable EIGRP on the FastEthernet0/0 and FastEthernet0/1 interface using the no passive-interface command. 

C. Change the AS number on the EIGRP routing process from 1 to 10 to much the AS number used on DSW1 and DSW2. 

D. Under the EIGRP process, delete the network 10.1.4.0 0.0.0.255 command and enter the network 10.1.4.4 0.0.0.252 and 10.1.4.8 0.0.0.252 commands. 

Answer:

Explanation: 

On R4, IPV4 EIGRP Routing, need to change the EIGRP AS number from 1 to 10 since DSW1 & DSW2 is configured to be in EIGRP AS number 10. 


Q33. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/01 – 2 vlan 10 command 

B. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security, followed by shutdown, no shutdown interface configuration commands. 

C. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. 

D. In Configuration mode, using the interface range Fa 1/0/1 – 2, then no switchport port-security interface configuration commands. Then in exec mode clear errdisable interface fa 1/0/1, then clear errdisable interface fa 1/0/2 commands. 

Answer:

Explanation: 

On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. 

Reference: http://www.cisco.com/en/US/tech/ABC389/ABC621/technologies_tech_note09186a00806c d87b.shtml 


Q34. - (Topic 14) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

The EIGRP AS number configured on R4 is wrong. 


Q35. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the BGP process, enter the bgp redistribute-internal command. 

B. Under the BGP process, bgp confederation identifier 65001command. 

C. Deleted the current BGP process and reenter all of the command using 65002 as the AS number. 

D. Under the BGP process, delete the neighbor 209.56.200.226 remote-as 65002 command and enter the neighbor 209.65.200.226 remote-as 65002 command. 

Answer:

Explanation: 

On R1 under router BGP change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 

Topic 10, Ticket 5 : NAT ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced 

during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

Sh ip bgp summary ----- State of BGP will be in established state & will be able to receive I prefix (209.65.200.241) 

. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of webserver & we are able to ping the same from R1. Further troubleshooting needs to be done on R1 on serial 0/0/1 

. Check for running config. i.e sh run for interface serial 0/0/1.. 

From above snapshot we are able to see that IP needs to be PAT to serial 0/0/1 to reach web server IP (209.65.200.241). But in access-list of NAT IP allowed IP is 10.1.0.0/16 is allowed & need 10.2.0.0 /16 to 

. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of web server & we are able to ping the same from R1. Its should be checked further for running config of interface for stopping 

. Change required: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 


Q36. - (Topic 12) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 

address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

On which device is the fault condition located? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer:

Explanation: 

port security needs is configured on ASW1. 


Q37. - (Topic 18) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolate the cause of this fault and answer the following question. 

The fault condition is related to which technology? 

A. NTP 

B. IP DHCP Server 

C. Ipv4 OSPF Routing 

D. Ipv4 EIGRP Routing. 

E. Ipv4 Route Redistribution. 

F. Ipv6 RIP Routing 

G. Ipv6 OSPF Routing 

H. Ipv4 and Ipv6 Interoperability 

I. Ipv4 layer 3 security. 

Answer:

Explanation: 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 

Topic 19, Ticket 14: IPv6 Routing Issue 1

Topology Overview (Actual Troubleshooting lab design is for below network design)

-Client Should have IP 10.2.1.3

-EIGRP 100 is running between switch DSW1 & DSW2

-OSPF (Process ID 1) is running between R1, R2, R3, R4

-Network of OSPF is redistributed in EIGRP

-BGP 65001 is configured on R1 with Webserver cloud AS 65002

-HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.

This network consists of four routers, two layer 3 switches and two layer 2 switches.

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.

ASW1 and ASW2 are layer 2 switches.

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.

The client workstations receive their IP address and default gateway via R4's DHCP server.

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices.

You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.

Question-1 Fault is found on which device,

Question-2 Fault condition is related to,

Question-3 What exact problem is seen & what needs to be done for solution

===============================================================================


Q38. - (Topic 11) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the interface Serial0/0/1 enter the ip access-group edge_security out command. 

B. Under the ip access-list extended edge_security configuration add the permit ip 

209.65.200.224 0.0.0.3 any command. 

C. Under the ip access-list extended edge_security configuration delete the deny ip 

10.0.0.0.0 0.255.255.255 any command. 

D. Under the interface Serial0/0/0 configuration delete the ip access-group edge_security in command and enter the ip access-group edge_security out command. 

Answer:

Explanation: 

On R1, we need to permit IP 209.65.200.222/30 under the access list. 

Topic 12, Ticket 7 : Port Security 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

ipconfig ----- Client will be getting 169.X.X.X 

. On ASW1 port Fa1/0/ 1 & Fa1/0/2 access port VLAN 10 was assigned but when we checked interface it was showing down 

Sh run ------- check for running config of int fa1/0/1 & fa1/0/2 (switchport access Vlan 10 will be there with switch port security command). Now check as below Sh int fa1/0/1 & sh int fa1/0/2 

. As seen on interface the port is in err-disable mode so need to clear port. 

. Change required: On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2.